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Abstract
Universum based twin support vector machines give prior information about the distribution of data to the classifier. This

leads to better generalization performance of the model, due to the universum. However, in many applications the data

points are not equally useful for the classification task. This leads to the use of fuzzy membership functions for the datasets.

Similarly, in universum based algorithms, all the universum data points are not equally important for the classifier. To

solve these problems, a novel fuzzy universum least squares twin support vector machine (FULSTSVM) is proposed in this

work. In FULSTSVM, the membership values are used to provide weights for the data samples of the classes, as well as to

the universum data. Further, the optimization problem of proposed FULSTSVM is obtained by solving a system of linear

equations. This leads to an efficient fuzzy based algorithm. Numerical experiments are performed on various benchmark

datasets, with discussions on generalization performance, and computational cost of the algorithms. The proposed

FULSTSVM outperformed the existing algorithms on most datasets. A comparison is presented for the performance of the

proposed and other baseline algorithms using statistical significance tests. To show the applicability of FULSTSVM,

applications are also presented, such as detection of Alzheimer’s disease, and breast cancer.
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1 Introduction

Support vector machines (SVMs) are one of the widely

used supervised learning algorithms for classification

problems [5]. SVM has been applied on applications

ranging from face recognition [36], text categorization

[30], to diagnosis of diseases, such as epilepsy [21, 35] or

Alzheimer’s disease [28]. The objective function of SVM

is convex, leading to a quadratic programming problem

(QPP). Moreover, due to the convexity, the optimization

problem of SVM gives a globally optimal solution. This is

the benefit of SVM in comparison to techniques such as

artificial neural networks (ANN), which give rise to locally

optimal solutions. However, for solving a QPP, the com-

putational complexity is very high i.e. Oðm3Þ, where m is

the number of samples. In order to reduce the overhead of

solving one large QPP, Jayadeva et al. [13] proposed a twin

support vector machine (TWSVM). TWSVM is based on

the idea of twin hyperplanes, rather than one as in SVM.

Further, Kumar and Gopal [15] proposed a least squares

twin SVM (LSTSVM) by minimizing the squared errors of

the data points. The computation time of LSTSVM is very

less in comparison to TWSVM. However, the LSTSVM

classifier is more sensitive to outliers, due to the quadratic

loss function. In an evaluation of 187 classifiers, robust

energy-based least squares twin support vector machine

(RELSTSVM) [27] turned out to be one of the better

performing classifiers. This can be attributed to the energy

values used for removing the effect of noise.

Data used in preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (adni.loni.usc.edu). As such, the investigators within

the ADNI contributed to the design and implementation of

ADNI and/or provided data but did not participate in analysis

or writing of this report. A complete listing of ADNI

investigators can be found at: http://adni.loni.usc.edu/wp-

content/uploads/how_to _apply/ADNI_Acknowledgement_

List.pdf
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Weston et al. [32] proposed the idea of universum data

to improve the generalization performance of the SVM

classifier. Universum is introduced in SVM based on the

principle of maximal contradiction. In the formulation of

SVM, there is no information about data distribution.

Therefore, by introducing the universum data, prior infor-

mation is incorporated in the optimization problem of

SVM. This prior information is in a form of Bayesian prior

for SVM [32]. Unlike the data points belonging to the

classes, the universum data are unlabelled, and lie in

between the binary classes. The univerum based SVM

algorithm (USVM) includes the universum points in an �-

insensitive tube between the binary classes. This algorithm

is further improved in [18] by proposing a universum based

twin support vector machine (UTSVM). The UTSVM

algorithm computes the hyperplanes faster than USVM. To

reduce the computation cost of UTSVM, Xu et al. [33]

proposed a universum least squares twin support vector

machine (ULSTSVM) by using quadratic loss for univer-

sum points. However, in many applications, the generation

of universum is not proper for the classification problem

[21], and is an active area of research. Cherkassky et al. [6]

discussed about the conditions for the effectiveness of

universum data. Like other forms of data, the universum

data also suffer from the problem of noise, and therefore

proper weights must be given to the data points of the

classes, and the universum.

In many applications, the data are generated with noise

in the features or labels. One way to solve this is to use

fuzzy memberships for the different data points. Lin and

Wang [16] proposed a fuzzy SVM using distance based

fuzzy functions. Fuzzy SVM has also been used for multi-

class problems [30], using a one-against-all (OAA)

approach. This approach of fuzzy memberships is extended

to class imbalance problems by Batuwita and Palade [4]

using different fuzzy membership functions. Recently, an

efficient fuzzy based approach is proposed as robust least

squares twin support vector machine for class imbalance

learning (RFLSTSVM-CIL) [22]. In the RFLSTSVM-CIL

algorithm, a fuzzy membership function is also proposed to

remove the effect of noisy data in class imbalance sce-

narios. A bilateral-weighted fuzzy SVM classifier is pro-

posed [3] by assigning fuzzy membership values to the data

points for both the classes. For detection of breast cancer,

hepatitis, and diabetes, a weighted least squares twin SVM

(WLSTSVM) [29] is proposed using hybrid feature selec-

tion. Moreover, a weighted least squares SVM is used with

manifold regularization for nonlinear systems [19].

For universum based algorithms, an entropy based fuzzy

membership is used in [23] to propose a fuzzy universum

SVM (FUSVM) and fuzzy universum twin SVM

(FUTSVM). In FUSVM and FUTSVM, the universum data

is given weightage on the basis of fuzzy membership

values. Fuzzy based twin SVMs have also been used in

financial risk predictions. A kernel based fuzzy twin SVM

algorithm [12] is proposed for estimating financial risks. A

novel twin SVM algorithm [11] is proposed using fuzzy

hyperplane for stock price prediction using financial news

articles. Moreover, in the case of incremental and decre-

mental learning, a fuzzy twin bounded support vector

machine is proposed [17]. Even for regression problems,

fuzzy based SVM models have been proposed, such as for

financial time series forecasting [14].

In this work, to show the applicability of the proposed

algorithm, we have included two applications: one is a

neurological disease i.e. Alzheimer’s disease, and other is

breast cancer. Alzheimer’s disease is a neuro-degenerative

disease, which is detected through magnetic resonance

imaging (MRI). Usually, the patients affected are of age 60

years and above [9]. Breast cancer consists of the majority

of cancers in woman [34]. Machine learning techniques can

improve the classification of identifying the cancer.

Therefore, we used histopathological images to classify

breast cancer using the proposed approach.

Inspired by the approach of RFLSTSVM-CIL and uni-

versum learning, in this work we present a novel fuzzy

based universum least squares twin support vector machine

(FULSTSVM). The main contributions of this work are as

follows:

• A novel fuzzy based least squares twin SVM algorithm

is presented using universum data.

• To remove the impact of outliers, fuzzy memberships

are calculated for the data points of the classes.

• Universum data are utilized to give prior information

about data distribution.

• To give proper information about data distribution,

fuzzy membership is assigned to the universum data

points.

• The proposed fuzzy based approach is incorporated

with a least squares model, leading to a system of linear

equations for generating the classifier.

• Experiments are shown for benchmark datasets, with

comparative analysis of the proposed and baseline

algorithms.

• Applications are shown on Alzheimer’s disease and

breast cancer datasets.

We use the following mathematical notations in this work:

A vector represented as w is a column vector. The matrices

D1 and D2 contain the data points of the binary classes

having size m1 � n and m2 � n, respectively, where n is the

number of features in each sample. The total number of

data points are m ¼ m1 þ m2. The universum data matrix is

denoted by U having dimension m3 � n. The transpose of a

vector is denoted as wt, 2-norm is represented by kwk, and
e is a vector of ones of appropriate dimension.
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2 Related work

This section presents the formulations of two related

algorithms for this work in brief. The algorithms are twin

support vector machine (TWSVM), and universum least

squares twin support vector machine (ULSTSVM).

2.1 TWSVM

The twin hyperplanes of nonlinear TWSVM algorithm are

generated by solving the following optimization problems,

min
w1; b1; n1

1

2
jjKðD1;G

tÞw1 þ e1b1jj2 þ c1e
t
2n1

s:t:� ðKðD2;G
tÞw1 þ e2b1Þ þ n1 � e2; n1 � 0;

ð1Þ

min
w2; b2; n2

1

2
jjKðD2;G

tÞw2 þ e2b2jj2 þ c2e
t
1n2

s:t: KðD1;G
tÞw2 þ e1b2 þ n2 � e1; n2 � 0;

ð2Þ

where KðD1;G
tÞ is the kernel matrix, G ¼ ½D1;D2�, ni is

slack variable, ci is penalty parameter, and ei is vector of

ones of suitable dimension, i ¼ 1; 2.

The classifiers are generated by calculating the param-

eters w and b by solving Wolfe duals [13] of Eqs. (1) and

(2), written as

max
a1

et2a1 �
1

2
at1NðMtMÞ�1Nta1

s:t: 0� a1 � c1

ð3Þ

and

max
a2

et1a2 �
1

2
at2MðNtNÞ�1Mta2

s:t:0� a2 � c2;

ð4Þ

where

M ¼ ½KðD1; G
tÞ e1� and N ¼ ½KðD2; G

tÞ e2�

; a1 and a2 are the vectors of Lagrange multipliers. The

classifying hyperplanes Kðxt;GtÞw1 þ b1 ¼ 0 and

Kðxt;GtÞw2 þ b2 ¼ 0, where x is a data point, are gener-

ated using the parameters wiði ¼ 1; 2Þ and biði ¼ 1; 2Þ from
the following equations,

w1

b1

� �
¼ �ðMtM þ dIÞ�1Nta1; ð5Þ

w2

b2

� �
¼ ðNtN þ dIÞ�1Mta2; ð6Þ

where d[ 0 is a small positive value for avoiding ill-

conditioning of the matrices MtM and NtN, and I is an

identity matrix of suitable size.

Using the following decision function, the class is

assigned to a new data point x.

class ðxÞ ¼ argmin i¼1;2jKðx;GtÞwi þ eibij: ð7Þ

2.2 ULSTSVM

The optimization problems of nonlinear ULSTSVM [18]

are described as

min
w1;b1;n1;w1

1

2
kKðD1;G

tÞw1 þ e1b1k2 þ
c1
2
kn1k2

þ c3
2
ðkw1k2 þ b21Þ þ

cu
2
kw1k

2

s:t:� ðKðD2;G
tÞw1 þ e2b1Þ þ n1 ¼ e2;

KðU;GtÞw1 þ eub1 þ w1 ¼ ð�1þ �Þeu;

ð8Þ

min
w2;b2;n2;w2

1

2
kKðD2;G

tÞw2 þ e2b2k2

þ c2
2
kn2k2 þ

c4
2
ðkw2k2 þ b22Þ þ

cu
2
kw2k

2

s:t:KðD1;G
tÞw2 þ e1b2 þ n2 ¼ e1;

� ðKðU;GtÞw2 þ eub2Þ þ w2 ¼ ð�1þ �Þeu;

ð9Þ

where ni;wi; are the slack variables, ci; cu, i ¼ 1; 2 are

positive penalty parameters, and ci, i ¼ 3; 4 are positive

parameters for the regularization.

Rewriting the optimization problem as an unconstrained

problem using values of error variables,

min
w1;b1

1

2
kKðD1;G

tÞw1 þ e1b1k2

þ c1
2
kKðD2;G

tÞw1 þ e2b1 þ e2k2

þ c3
2
ðkw1k2 þ b21Þ

þ cu
2
k � ðKðU;GtÞw1 þ eub1Þ þ ð�1þ �Þeuk2;

ð10Þ

min
w2;b2

1

2
kKðD2;G

tÞw2 þ e2b2k2

þ c2
2
k � ðKðD1;G

tÞw2 þ e1b2Þ þ e1k2

þ c4
2
ðkw2k2 þ b22Þ

þ cu
2
kðKðU;GtÞw2 þ eub2Þ þ ð�1þ �Þeuk2:

ð11Þ

By equating the gradient of Eq. (10) w.r.t. w1 and b1 equal

to 0, we get

K
�
D1;G

t
�t�

KðD1;G
tÞw1 þ e1b1

�
þ c1K

�
D2;G

t
�t�

KðD2;G
tÞw1 þ e2b1 þ e2

�
þ c3w1 þ cuKðU;GtÞt

�
KðU;GtÞw1

þ eub1 � ð�1þ �Þeu
�
¼ 0;

ð12Þ
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et1
�
KðD1;G

tÞw1 þ e1b1
�

þ c1e
t
2

�
KðD2;G

tÞw1 þ e2b1 þ e2
�

þ c3b1 þ cue
t
u

�
KðU;GtÞw2

þ eub1 � ð�1þ �Þeu
�
¼ 0:

ð13Þ

Rewriting Eqs. (12) and (13) and solving, we get

½w1 b1�t ¼�
�
MtM þ c1N

tN þ c3I þ cuO
tO
��1

�
c1N

te2 þ cuð1� �ÞOteu
�
;

ð14Þ

where M ¼ ½KðD1;G
tÞ e1�, N ¼ ½KðD2;G

tÞ e2�, and

O ¼ ½KðU;GtÞ eu�. In a similar manner, by performing the

same procedure on Eq. (11), we get

½w2 b2�t ¼
�
NtN þ c2M

tM þ c4I þ cuO
tO
��1

�
c2M

te1 þ cuð1� �ÞOteu
�
:

ð15Þ

The class of a new data point is assigned based on the

proximal hyperplane [33].

3 Proposed fuzzy universum least squares
twin support vector machine (FULSTSVM)

This section presents the formulation of the proposed

FULSTSVM algorithm in the linear and nonlinear form,

with the fuzzy membership function. The proposed algo-

rithm is motivated by the approach used in RFLSTSVM-

CIL for removing the effect of outliers. In proposed

FULSTSVM, the fuzzy memberships are calculated for the

data samples belonging to the classes, as well as to the

universum using fuzzy membership matrices as described

below.

3.1 Linear FULSTSVM

The formulation of proposed FULSTSVM for the linear

case is described using optimization problems (16) and

(17). In the objective function of the primal problem (16),

we use three diagonal matrices represented by Si containing

the fuzzy memberships of the data points of ith class. The

memberships of the data points are calculated on the basis

of distance from their respective class centres.

We also add regularization in the objective function to

include the structural risk minimization principle (SRM)

principle. The constraints are similar to the ULSTSVM

formulation described in the previous subsection. Figure 1

shows a pictorial representation of the proposed approach.

min
w1;b1;n1;w1

1

2
kS1ðD1w1 þ e1b1Þk2

þ c1
2
kS2n1k2 þ

c3
2
ðkw1k2 þ b21Þ þ

cu
2
kSuw1k

2

s:t: � ðD2w1 þ e2b1Þ þ n1 ¼ e2;

Uw1 þ eub1 þ w1 ¼ ð�1þ �Þeu;

ð16Þ

min
w2;b2;n2;w2

1

2
kS2ðD2w2 þ e2b2Þk2 þ

c2
2
kS1n2k2

þ c4
2
ðkw2k2 þ b22Þ þ

cu
2
kSuw2k

2

s:t:D1w2 þ e1b2 þ n2 ¼ e1;

� ðUw2 þ eub2Þ þ w2 ¼ ð�1þ �Þeu;

ð17Þ

where Si; Su are diagonal matrices containing fuzzy mem-

bership values of data samples belonging to the classes and

universum, respectively. ni;wi; are the slack variables, and

ci; cu are positive penalty parameters, i ¼ 1; 2. The

parameter for the insensitive zone is �, while ci, i ¼ 3; 4 are

the parameters for regularization.

Rewriting the objective functions using the values of the

error variables,

min
w1;b1

1

2
kS1ðD1w1 þ e1b1Þk2

þ c1
2
kS2ðD2w1 þ e2b1 þ e2Þk2

þ c3
2
ðkw1k2 þ b21Þ þ

cu
2
kSuð�ðUw1 þ eub1Þ þ ð�1þ �ÞeuÞk2;

ð18Þ

min
w2;b2

1

2
kS2ðD2w2 þ e2b2Þk2

þ c2
2
kS1ð�ðD1w2 þ e1b2Þ þ e1Þk2

þ c4
2
ðkw2k2 þ b22Þ þ

cu
2
kSuðUw2 þ eub2 þ ð�1þ �ÞeuÞk2:

ð19Þ

By setting the gradient of QPP (18) w.r.t. w1 and b1 equal

to 0, and solving we get

Fig. 1 Universum data with noise
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c3w1 þ ðS1D1ÞtðS1ðD1w1 þ e1b1ÞÞ
þ c1ðS2D2ÞtðS2ðD2w1 þ e2b1 þ e2ÞÞ
� cuðSuUÞtðSuð�ðUw1 þ eub1Þ þ ð�1þ �ÞeuÞ ¼ 0;

ð20Þ

c3b1 þ ðS1e1ÞtðS1ðD1w1 þ e1b1ÞÞ
þ c1ðS2e2ÞtðS2ðD2w1 þ e2b1 þ e2ÞÞ
� cuðSueuÞtðSuð�ðUw1 þ eub1Þ þ ð�1þ �ÞeuÞ ¼ 0;

ð21Þ

Rewriting Eqs. (20) and (21) with u1 ¼ ½w1 b1�t and

combining, we get

c3u1 þ VtVu1 þ c1W
tWu1 þ c1W

tS2e2

þ cuZ
tZu1 þ cuZ

tSuð1� �Þeu ¼ 0
ð22Þ

Rearranging the terms and solving, we get

½w1 b1�t ¼ �ðVtV þ c1W
tW þ c3I þ cuZ

tZÞ�1

ðc1WtS2e2 þ cuZ
tSuð1� �ÞeuÞ;

ð23Þ

where V ¼ ½S1D1 S1e1�, W ¼ ½S2D2 S2e2�, and

Z ¼ ½SuU Sueu�.
Similarly, using the procedure for Eq. (19) and solving,

we get

½w2 b2�t ¼ ðWtW þ c2V
tV þ c4I þ cuZ

tZÞ�1

ðc2VtS1e1 þ cuZ
tSuð1� �ÞeuÞ:

ð24Þ

A new data point x is classified using the following

function,

class ðxÞ ¼ argmin i¼1;2

jxtwi þ eibij
kwik

: ð25Þ

3.2 Nonlinear FULSTSVM

The formulation of nonlinear FULSTSVM is written as

min
w1;b1;n1;w1

1

2
kS1ðKðD1;G

tÞw1 þ e1b1Þk2

þ c1
2
kS2n1k2 þ

c3
2
ðkw1k2 þ b21Þ

þ cu
2
kSuw1k

2

s:t:� ðKðD2;G
tÞw1 þ e2b1Þ þ n1 ¼ e2;

KðU;GtÞw1 þ eub1 þ w1 ¼ ð�1þ �Þeu;

ð26Þ

min
w2;b2;n2;w2

1

2
kS2ðKðD2;G

tÞw2 þ e2b2Þk2

þ c2
2
kS1n2k2 þ

c4
2
ðkw2k2 þ b22Þ

þ cu
2
kSuw2k

2

ð27Þ

s:t:KðD1;G
tÞw2 þ e1b2 þ n2 ¼ e1;

� ðKðU;GtÞw2 þ eub2Þ þ w2 ¼ ð�1þ �Þeu;
ð28Þ

where KðD1;G
tÞ is the kernel matrix, G ¼ ½D1;D2�, Si; Su

are diagonal matrices containing fuzzy membership values

of data points in the classes and universum, respectively,

i ¼ 1; 2.

Rewriting the objective functions using the constraints,

we get

min
w1;b1

1

2
kS1ðKðD1;G

tÞw1 þ e1b1Þk2

þ c1
2
kS2ðKðD2;G

tÞw1 þ e2b1 þ e2Þk2

þ c3
2
ðkw1k2 þ b21Þ

þ cu
2
kSuð�ðKðU;GtÞw1 þ eub1Þ þ ð�1þ �ÞeuÞk2;

ð29Þ

min
w2;b2

1

2
kS2ðKðD2;G

tÞw2 þ e2b2Þk2

þ c2
2
kS1ð�ðKðD1;G

tÞw2 þ e1b2Þ þ e1Þk2

þ c4
2
ðkw2k2 þ b22Þ þ

cu
2
kSuðKðU;GtÞw2

þ eub2 þ ð�1þ �ÞeuÞk2:

ð30Þ

The parameters w1 and b1 are obtained by setting the

gradient of QPP (29) w.r.t. w1 and b1 equal to 0, and

solving we get,

½w1 b1�t ¼�
�
MtM þ c1N

tN þ c3I þ cuO
tO
��1

�
c1N

tS2e2 þ cuO
tSuð1� �Þeu

�
;

ð31Þ

where M ¼ ½S1KðD1;G
tÞ S1e1�, N ¼ ½S2KðD2;G

tÞ S2e2�,
and O ¼ ½SuKðU;GtÞ Sueu�. Similarly, using Eq. (30), we

get

½w2 b2�t ¼
�
NtN þ c2M

tM þ c4I þ cuO
tO
��1

�
c2M

tS1e1 þ cuO
tSuð1� �Þeu

�
:

ð32Þ

For a new data point, similar to linear case, the class is

assigned based on the class of the nearest hyperplane. In

the following section, we present the fuzzy membership

function used in the proposed FULSTSVM.

3.3 Fuzzy membership function

The proposed FULSTSVM utilizes a fuzzy function

inspired by [16]. The following fuzzy function keeps the

range of fuzzy memberships in the range (0.5, 1]. The

membership function is described as

f ðxiÞ ¼ 1� 0:5

�
xi � cj
�� ��
rj þ d

�
; ð33Þ
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where xi is a data point belonging to class j with centre cj,

i ¼ 1; . . .;mj; j ¼ 1; 2. The variable rj is the largest distance

from the class centre of data points of class j, and d is a

very small positive value to avoid division by zero.

The range of fuzzy memberships in the above-men-

tioned fuzzy function is chosen as (0.5, 1]. This is to keep

significant contribution of majority of the data points in the

formation of the classifier. Moreover, the proposed

FULSTSVM also gives fuzzy memberships to the univer-

sum data points. The contribution of most universum data

points is required for providing prior information about the

data, which is achieved by this function. Moreover, the

contribution of outliers is reduced accordingly. This

approach is in contrast to the approach proposed in FSVM

[16], where the fuzzy memberships are chosen in the range

(0, 1].

3.4 Time complexity

The time complexity of TWSVM is 2 � Oðm=2Þ3 i.e.

OðmÞ3=4, where m is total number of data points [13]. This

is the time complexity of solving the QPPs, which is a

computationally intensive task. Moreover, TWSVM

involves two matrix inverses having a complexity of OðnÞ3,
where n is the dimension of the matrix [2]. Similarly,

UTWSVM has time complexity of Oðmþ 2uÞ3=4, where
u denotes the number of universum data points.

On the other hand, the formulation of LSTSVM involves

solution of linear equations using two matrix inverses.

Therefore, the computation time of LSTSVM is lesser than

TWSVM and UTSVM in Table 1. Similarly, ULSTSVM

involves two inverses with additional universum data. The

time complexity of proposed FULSTSVM is similar to

ULSTSVM, with additional complexity for fuzzy mem-

bership function. The complexity of fuzzy membership is

O(m). Hence, the computation of FULSTSVM is more than

ULSTSVM, but the additional time is O(m), which is

insignificant w.r.t. cubic complexity of inverse calculation

in FULSTSVM and ULSTSVM.

4 Experimental results

In this section, we perform numerical experiments, and

show the comparative analysis of the results obtained on

benchmark datasets. We also present two biomedical

applications, viz. Alzheimer’s disease and breast cancer to

show the utility of the proposed FULSTSVM.

4.1 Data

All the real-world benchmark datasets are downloaded

from the UCI [8], and KEEL repositories [1]. The MRI

images used in this work are taken from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.-

loni.usc.edu). ADNI was started in 2003 as a public-private

partnership, led by Principal Investigator Michael W.

Weiner, MD. The main objective of ADNI is to find out the

effectiveness of neuroimaging techniques like MRI, posi-

tron emission tomography (PET), other biological markers,

and clinical neuropsychological tests to estimate the onset

of Alzheimer’s disease from the state of mild cognitive

impairment. For more information, visit www.adni-

info.org. For breast cancer, the BreakHis histopathological

dataset is utilized [26] in this work.

4.2 Setup and methodology

The experiments for all the algorithms are performed on a

PC running on 64 bit Windows 10 operating system, with

2.30 GHz Intel� Xeon processor, and 128 GB of RAM

with MATLAB R2017a environment. For cross validation,

a 5-fold cross validation strategy is used for selecting the

optimal parameters for all the algorithms. An additional

optimization toolbox i.e. MOSEK optimization toolbox

(http://www.mosek.com) is used for solving the QPPs of

TWSVM and UTSVM.

For experiments on real-world datasets, the parameters

are selected as follows: c1 ¼ c2 ¼ cu, and c3 ¼ c4 are

selected from f10�5; 10�4; :::; 105g, while l is selected

from the set f2�5; 2�4; :::; 25g. The parameter � is selected

from f0:2; 0:4; 0:6; 0:8g. The universum is generated by

averaging the samples randomly from the data [18, 21].

The training and testing data are chosen as 50% of total

samples. For large scale datasets, we use fixed value of the

hyper-parameters [24, 25]. Therefore, the value of c1 ¼
c2 ¼ cu is fixed as 10, and c3 ¼ c4 is set as 10�5, � is

selected as 0.7, and l is chosen as 2 for all the algorithms.

In all the algorithms, a radial basis function (RBF) kernel is

used, which is defined as

Kðp; qÞ ¼ exp

�
� kp� qk2

2l2

�
; ð34Þ

where l is a scalar parameter, and p and q are vectors.

In biomedical datasets, we used 150 structural MRI (T1)

images from the ADNI database. The MRI images are

preprocessed using Freesurfer pipeline [20, 31] to obtain

the volumetric analysis of the brain. This resulted into

volumetric data of 149 images, because 1 image failed to

process. Therefore, the dataset includes 50 images each of

control normal (CN), mild cognitive impairment (MCI),
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Table 1 Comparative performance of proposed algorithm with existing approaches for classification on real-world benchmark datasets

Datasets

(size)

TWSVM

[13]

Accuracy

ðc1; lÞ
Time (s)

UTSVM

[18]

Accuracy

ðc1; l; �Þ
Time (s)

LSTSVM

[15]

Accuracy

ðc1;lÞ
Time (s)

ULSTSVM

[33]

Accuracy

ðc1; c3; �; lÞ
Time (s)

Proposed

FULSTSVM

Accuracy

ðc1; c3; �; lÞ
Time (s)

Ecoli-0-1_vs_5

(240� 12)

93.39

(10�5; 25)

0.2566

95.04

(10�4; 24, 0.6)

0.2598

93.39

(10�5; 25)

0.0221

95.04

(10�5, 10�1; 0:2; 24)

0.0261

95.04

(10�5; 10�2; 0:2; 24)

0.0388

Ecoli-0-1-4-7_vs_5-6

(332� 12)

95.81

(10�4; 25)

0.0794

98.2

(10�3; 24; 0:4)

0.0781

97.6

(10�1; 25)

0.0321

98.8

(100; 10�1; 0:6; 25)

0.0364

98.8

(100; 10�2; 0:6; 25)

0.0444

Ecoli-0-2-3-4_vs_5

(202� 7)

98.04

(10�3; 24)

0.0881

98.04

(10�4; 25; 0:4)

0.0898

97.06

(101; 25)

0.0118

94.12

(10�2; 10�5; 0:4; 24)

0.0129

99.02

(10�2; 10�5; 0:6; 25)

0.0161

Ecoli-0-2-6-7_vs_3-5

(224� 7)

93.81

(10�2; 25)

0.0332

94.69

(10�2; 25; 0:4)

0.0379

97.35

(102; 25)

0.0141

92.92

(10�1; 10�5; 0:6; 25)

0.0157

94.69

(100; 10�4; 0:6; 25)

0.019

Ecoli-0-4-6_vs_5

(202� 6)

94.12

(10�5; 25)

0.0274

94.12

(10�4; 25; 0:8)

0.0384

94.12

(103; 25)

0.0155

95.1

(100; 10�3; 0:6; 25)

0.018

96.08

(100; 10�5; 0:4; 25)

0.0189

Ecoli-0-6-7_vs_3-5

(222� 7)

91.07

(10�4; 24)

0.0295

91.07

(10�3; 24; 0:4)

0.0333

94.64

(101; 25)

0.0137

93.75

(10�1; 10�5; 0:4; 25)

0.0156

93.75

(101; 10�3; 0:2; 25)

0.0177

Glass4 (214� 9) 94.44

(10�5; 20)

0.0341

95.37

(10�1; 23; 0:2)

0.0304

94.44

(10�5; 20)

0.0127

95.37

(10�1; 10�5; 0:6; 21)

0.0108

97.22

(100; 10�4; 0:6; 21)

0.0192

Vehicle 1 (846� 18) 74.06

(10�4; 25)

0.2701

73.82

(10�4; 25; 0:8)

0.3207

73.82

(10�4; 25)

0.2116

72.88

(10�4; 10�5; 0:6; 25)

0.2364

73.82

(10�4; 10�5; 0:2; 25)

0.2319

Vehicle2 (846� 18) 96.7

(10�3; 25)

0.2824

98.11

(10�3; 25; 0:6)

0.243

98.11

(10�2; 25)

0.1469

98.11

(100; 10�3; 0:6; 25)

0.2063

98.11

(10�1; 10�5; 0:6; 25)

0.2338

Pima Indians (768� 8) 75.84

(10�5; 25)

0.1783

76.1

(10�5; 25; 0:8)

0.1807

74.81

(10�5; 25)

0.1164

74.29

(10�5; 10�5; 0:2; 25)

0.1264

78.96

(101; 101; 0:6; 25)

0.1369

Yeast3 (1484� 8) 94.35

(10�1; 20)

0.6316

93.41

(103; 22; 0:6)

0.7756

93.67

(10�2; 20)

0.463

93.81

(10�2; 10�5; 0:2; 20)

0.5962

94.21

(103; 103; 0:8; 2�2)

0.495

Yeast1vs7 (458� 8) 92.61

(10�1; 2�1)

0.0933

93.04

(10�1; 20; 0:4)

0.079

92.61

(100; 2�1)

0.0434

93.48

(10�2; 10�3; 0:4; 2�2)

0.0471

93.48

(10�2; 10�3; 0:4; 2�2)

0.0593

Ecoli0137vs26

(311� 7)

97.44

(10�1; 23)

0.0364

96.15

(100; 20; 0:4)

0.0428

94.87

(10�3; 2�2)

0.01876

95.51

(10�2; 10�1; 0:2; 21)

0.0206

96.15

(10�5; 100; 0:2; 2�1)

0.0244

Yeast5 (1484� 8) 96.64

(100; 24)

0.805

96.64

(10�4; 2�2; 0:2)

0.7354

96.5

(10�5; 2�1)

0.4878

96.5

(10�5; 10�5; 0:4; 2�1)

0.5705

96.77

(10�4; 10�3; 0:6; 2�2)

0.5929
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and 49 images of Alzheimer’s disease (AD). A total of 91

features are extracted including 23 subcortical, 34 white

matter volumes, and 34 cortical thickness values.

For breast cancer, the images are converted to gray

level, and features are extracted using wavelet transform

(Daubechies-4) up to 3 levels of decomposition. The

approximation and detail coefficients are concatenated to

form the feature vector [10]. A total of 314 breast cancer

images include ADN- adenosis (benign), and DC- ductal

carcinoma (cancer).

4.3 Real-world data

The results on 18 real-world benchmark datasets are pre-

sented in Table 1. For comparison, we have used TWSVM

[13], UTSVM [18], LSTSVM [15], and ULSTSVM [33]

algorithms. One can observe in Table 1 that the proposed

FULSTSVM obtained the highest accuracies in 11 datasets.

FULSTSVM outperformed the existing algorithms by

obtaining an average rank of 1.8056 on accuracy values.

This is due to the use of fuzzy memberships for all the data

points in the proposed FULSTSVM. It is noticeable that the

proposed FULSTSVM achieved the highest accuracy of

98:54% for Breast cancer wisconsion dataset with

LSTSVM. However, ULSTSVM achieved a lesser accu-

racy of 98:25%, due to equal weighting to all the univer-

sum data points in ULSTSVM.

One can observe in Table 1 that the training time of

proposed FULSTSVM is lower than TWSVM and UTSVM

algorithms. This is because TWSVM and UTSVM solve a

pair of QPPs, which is computationally expensive. On the

other hand proposed FULSTSVM solves a system of linear

equations. However, the training time of FULSTSVM is

higher than LSTSVM, and ULSTSVM because of the

fuzzy membership calculations.

4.3.1 Statistical significance

In order to prove the statistical significance of the proposed

FULSTSVM for generalization performance, we perform

the Friedman and Nemenyi post hoc test [7].

The Friedman test is performed using the average ranks

of the algorithms from Table 1. Here, we first assume that

all the algorithms are not significantly different, as the null

hypothesis. Then, we calculate the v2F value as

v2F ¼ 12N

pðpþ 1Þ

"Xp
i¼1

R2
i �

pðpþ 1Þ2

4

#
; ð35Þ

where N is number of datasets, p is the number of algo-

rithms, and Ri is average rank for the methods.

v2F ¼ 12� 18

5ð5þ 1Þ"
ð3:55562 þ 3:22222 þ 3:30562 þ 3:11112 þ 1:80562Þ � 5ð5þ 1Þ2

4

#
;

	 13:6151:

ð36Þ

The FF value is obtained as

Table 1 (continued)

Datasets

(size)

TWSVM

[13]

Accuracy

ðc1; lÞ
Time (s)

UTSVM

[18]

Accuracy

ðc1; l; �Þ
Time (s)

LSTSVM

[15]

Accuracy

ðc1;lÞ
Time (s)

ULSTSVM

[33]

Accuracy

ðc1; c3; �; lÞ
Time (s)

Proposed

FULSTSVM

Accuracy

ðc1; c3; �; lÞ
Time (s)

Cleveland (297� 13) 81.21

(10�1; 24)

0.0289

76.51

(10�2; 23; 0:8)

0.0319

81.21

(101; 24)

0.0172

81.88

(102; 103; 0:6; 22)

0.0194

83.22

(10�1; 10�4; 0:6; 25)

0.0254

Transfusion (748� 4) 78.93

(10�3; 25)

0.2164

78.93

(10�3; 25; 0:2)

0.2377

81.07

(10�3; 25)

0.1115

82.67

(102; 101; 0:4; 25)

0.1207

81.87

(101; 101; 0:4; 25)

0.1559

Breast cancer wisconsin

(682� 9)

98.25

(10�4; 23)

0.1431

98.25

(10�4; 23; 0:2)

0.1971

98.54

(100; 25)

0.0855

98.25

(100; 101; 0:8; 24)

0.095

98.54

(103; 102; 0:4; 25)

0.1408

Ripley (1250� 2) 90.58

(100; 2�1)

0.5155

91.05

(100; 2�1; 0:4)

0.5511

91.21

(100; 2�1)

0.3014

91.05

(103; 105; 0:8; 2�3)

0.3378

91.05

(10�2; 10�5; 0:4; 2�1)

0.4951

Average rank 3.5556 3.2222 3.3056 3.1111 1.8056

Accuracy is in percentage, and average rank is calculated on accuracy. Bold values indicate highest accuracy
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FF ¼ ð18� 1Þð13:6151Þ
18� ð5� 1Þ � 13:6151

	 3:9643: ð37Þ

In this case, the F-distribution has
�
5� 1; ð5� 1Þð18�

1Þ
�
¼ ð4; 68Þ degrees of freedom. Therefore, the critical

value for F(6, 150) at a ¼ 0:05 level of significance is

2.5066. Since, FF ¼ 3:9643[ 2:5066, we reject the null

hypothesis. Thus, there is significant difference between

these methods.

Next, for pairwise difference, we use the Nemenyi

posthoc test [7] to check pairwise difference between

proposed FULSTSVM and existing algorithms. The critical

difference for our case at a ¼ 0:10 level of significance

level is 2:459
ffiffiffiffiffiffiffiffiffiffiffi
5ð5þ1Þ
6�18

q
	 1:296. The pairwise difference of

the average ranks should be greater than CD for signifi-

cance. Table 2 shows the pairwise significant difference

between the methods based on average ranks. One can

observe that proposed FULSTSVM is significantly

Table 2 Significant difference between the proposed FULSTSVM and existing algorithms in pairwise comparison

Significance TWSVM UTSVM LSTSVM ULSTSVM

Proposed FULSTSVM Yes Yes Yes Yes
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Fig. 2 Insensitivity analysis of proposed FULSTSVM for c1 and l in (a) and (b), and for c1 and � in (c) and (d) on real-world benchmark datasets
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different from TWSVM, UTSVM, LSTSVM, and

ULSTSVM algorithms.

4.4 Insensitivity analysis

To check the effect of hyper-parameter values on the

accuracy of the proposed FULSTSVM, we present the

insensitive analysis. The insensitivity performance is

checked for the penalty parameter c1, with kernel param-

eter l, and c1 with � parameter of the insensitive zone. The

variation of accuracy of FULSTSVM for these parameters

is shown for four datasets in Fig. 2.

Figure 2a, b shows the change in accuracy for different

values of c1 and l. One can observe that accuracy of

proposed FULSTSVM is higher for lower values of c1, and

higher values of l. The variation in accuracy for c1 with �

is shown in Fig. 2c, d. The parameter � is not affecting the

accuracy in a significant manner. However, here also the

accuracy of FULSTSVM is higher for lesser values of the

hyper-parameter c1. This also justifies the parameter

selection in the experiments.

4.5 Biomedical data

In this section, we present the results on classification of

Alzheimer’s disease and breast cancer datasets. The results

for these applications are shown in Table 3. One can

observe that the proposed FULSTSVM performs better

than baseline algorithms in most of the cases. This is

reflected in the average rank based on accuracy. Proposed

FULSTSVM obtained lowest average rank of 2.5. The

accuracy of FULSTSVM is higher than other algorithms

for AD_MCI, which is a difficult classification problem

[28].

Moreover, for breast cancer data i.e. adenosis vs ductal

carcinoma, proposed FULSTSVM obtains highest accuracy

of 84:18%. The better average rank of proposed

FULSTSVM for accuracy can be attributed to the use of

Table 3 Comparative performance of the proposed and baseline algorithms on Alzheimer’s and breast cancer datasets

Datasets TWSVM [13]

Accuracy ðc1;lÞ
Time (s)

UTSVM [18]

Accuracy ðc1; l; �Þ
Time (s)

LSTSVM [15]

Accuracy ðc1;lÞ
Time (s)

ULSTSVM [33]

Accuracy ðc1; c3; �;lÞ
Time (s)

Proposed FULSTSVM

Accuracy ðc1; c3; �;lÞ Time

(s)

CN_AD 80 (10�1; 25) 0.255 80 (10�1; 25; 0:2)
0.2427

77.5 (10�5; 21) 0.0105 75 (101; 104; 0:8; 24)
0.0149

72.5 (10�5; 104; 0:2; 24)
0.0255

CN_MCI 69.23 (10�5; 25)
0.0311

66.67 (10�2; 22; 0:8)
0.0328

69.23 (10�5; 25)
0.0062

71.79

(10�1; 10�4; 0:2; 25)
0.0081

69.23 (100; 10�3; 0:2; 24)
0.0109

AD_MCI 53.85 (10�5; 25)
0.094

58.97 (10�1; 20; 0:2)
0.0677

48.72 (10�1; 25) 0.006 48.72

(10�2; 10�5; 0:8; 2�1)

0.0054

66.67 (10�5; 10�4; 0:6; 25)
0.0094

ADN_DC 83.54 (10�5; 23)
0.2538

83.54 (10�4; 24; 0:4)
0.2968

83.54 (10�5; 23)
0.0732

82.28 (10�5; 100; 0:2; 24)
0.0939

84.18 (10�5; 10�1; 0:2; 25)
0.1072

Average

rank

2.625 2.875 3.375 3.625 2.5

Accuracy is in percentage. Bold values indicate highest accuracy

Table 4 Classification performance of the proposed and baseline algorithms on large-scale datasets

Datasets LSTSVM [15] Accuracy time (s) ULSTSVM[33] Accuracy time (s) Proposed FULSTSVM Accuracy time (s)

Skin-5k 93.56 97.8 97.76

4.9931 5.7513 6.1476

Skin-10k 95.26 97.64 97.88

20.8591 24.0887 24.4975

Skin-20k 97.03 98.8 98.91

97.2516 104.539 105.941

Skin-30k 97.74 99.23 99.25

233.092 243.475 247.076

Skin-40k 98.6 99.47 99.53

427.891 453.43 548.742

Accuracy is in percentage. Bold values indicate highest accuracy
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fuzzy membership with universum data. It leads to prior

information for the model, with less sensitivity to outlier

data points in the classes, as well as in the universum. This

implies the applicability of the proposed FULSTSVM for

biomedical applications.

4.6 Large-scale data

In order to check the performance of our proposed

FULSTSVM on large datasets, we used the Skin segmen-

tation dataset from UCI repository [8]. For comparison, we

used two other efficient algorithms, viz. LSTSVM, and

ULSTSVM. The results are shown in Table 4. It is

observable that the proposed FULSTSVM is showing

higher accuracy on most of the datasets. This is because

FULSTSVM removes the effect of outliers in the genera-

tion of universum data, whereas ULSTSVM gives equal

importance to all the universum data points. Moreover, the

proposed FULSTSVM also gives proper weighting to the

data points of the binary classes, where LSTSVM gives

equal to weights to all the data points. However, the time is

the least in case of LSTSVM, because there is no univer-

sum data in LSTSVM. The time is slightly higher in

FULSTSVM as compared to ULSTSVM due to the cal-

culation of fuzzy membership values. However, the addi-

tional time in FULSTSVM is not significant as discussed in

Sect. 3.4 in terms of time complexity.

5 Conclusions and future work

In this work, to deal with noisy datasets, we proposed a

novel and efficient fuzzy based learning algorithm, termed

as fuzzy universum least squares twin support vector

machine (FULSTSVM). The proposed algorithm gives

prior information about data distribution to the classifier,

and also provides fuzzy membership to the data points and

universum. Moreover, the optimization problem of

FULSTSVM is solved by a system of linear equations. This

makes FULSTSVM efficient in terms of training time. The

proposed FULSTVM is a robust universum based algo-

rithm for classification of data with outliers. Statistical tests

on experimental results confirm the significance of the

proposed algorithm. Proposed FULSTSVM also performed

better on large sized datasets in terms of accuracy, showing

its scalability on large datasets.

Results on applications i.e. Alzheimer’s disease and

breast cancer clearly show the applicability of the proposed

FULSTSVM for healthcare data. In future, the proposed

FULSTSVM can be improved by implementing new

techniques for selecting the universum. The universum data

can be selected from a dataset related to a particular

application. Moreover, novel fuzzy membership functions

can be used with the proposed FULSTSVM in various

applications. Proposed FULSTSVM can also be extended

for class imbalanced and multiclass problems. The code of

proposed FULSTSVM will be available on the author’s

homepage: https://github.com/mtanveer1/.
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7. Demšar J (2006) Statistical comparisons of classifiers over mul-

tiple data sets. J Mach Learn Res 7:1–30

8. Dua D, Graff C (2014) UCI machine learning repository. http://

archive.ics.uci.edu/ml

9. Frozza RL, Lourenco MV, De Felice FG (2018) Challenges for

Alzheimer’s disease therapy: insights from novel mechanisms

beyond memory defects. Front Neurosci 12:37

10. Gautam C, Mishra PK, Tiwari A, Richhariya B, Pandey HM,

Wang S, Tanveer M (2020) ADNI: minimum variance-embedded

deep kernel regularized least squares method for one-class clas-

sification and its applications to biomedical data. Neural Netw

123:191–216

11. Hao PY, Kung CF, Chang CY, Ou JB (2020) Predicting stock

price trends based on financial news articles and using a novel

twin support vector machine with fuzzy hyperplane. Appl Soft

Comput 98:106806

12. Huang X, Guo F (2020) A kernel fuzzy twin SVM model for

early warning systems of extreme financial risks. Int J Financ

Econ. https://doi.org/10.1002/ijfe.1858

13. Jayadeva Khemchandani R, Chandra S (2007) Twin support

vector machines for pattern classification. IEEE Trans Pattern

Anal Mach Intell 29(5):905–910

14. Khemchandani R, Jayadeva CS (2009) Regularized least squares

fuzzy support vector regression for financial time series fore-

casting. Expert Syst Appl 36(1):132–138

15. Kumar MA, Gopal M (2009) Least squares twin support vector

machines for pattern classification. Expert Syst Appl

36(4):7535–7543

16. Lin CF, Wang SD (2002) Fuzzy support vector machines. IEEE

Trans Neural Netw 13(2):464–471

17. Mello AR, Stemmer MR, Koerich AL (2020) Incremental and

decremental fuzzy bounded twin support vector machine. Inf Sci

526:20–38

18. Qi Z, Tian Y, Shi Y (2012) Twin support vector machine with

universum data. Neural Netw 36:112–119

19. Qin G, Lu X (2018) Integration of weighted LS-SVM and man-

ifold learning for fuzzy modeling. Neurocomputing 282:184–191

20. Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-

subject template estimation for unbiased longitudinal image

analysis. NeuroImage 61(4):1402–1418

21. Richhariya B, Tanveer M (2018) EEG signal classification using

universum support vector machine. Expert Syst Appl

106:169–182

22. Richhariya B, Tanveer M (2018) A robust fuzzy least squares

twin support vector machine for class imbalance learning. Appl

Soft Comput 71:418–432

23. Richhariya B, Tanveer M (2019) A fuzzy universum support

vector machine based on information entropy. In: Tanveer M,

Pachori RB (eds) Machine Intelligence and Signal Analysis.

Advances in Intelligent Systems and Computing. Springer, Sin-

gapore, pp 569–582. https://doi.org/10.1007/978-981-13-0923-6_

49

24. Richhariya B, Tanveer M (2020) Alzheimer’s disease neu-

roimaging initiative: an efficient angle based universum least

squares twin support vector machine for pattern classification.

ACM Trans Internet Technol. https://doi.org/10.1145/3387131

25. Shao YH, Deng NY, Yang ZM (2012) Least squares recursive

projection twin support vector machine for classification. Pattern

Recogn 45(6):2299–2307

26. Spanhol F, Oliveira L, Petitjean C, Heutte L (2015) A dataset for

breast cancer histopathological image classification. IEEE Trans

Biomed Eng 63(7):1455–1462

27. Tanveer M, Khan MA, Ho SS (2016) Robust energy-based least

squares twin support vector machines. Appl Intell 45(1):174–186

28. Tanveer M, Richhariya B, Khan RU, Rashid AH, Khanna P,

Prasad M, Lin CT (2020) Machine learning techniques for the

diagnosis of Alzheimer’s disease: a review. ACM Trans Mul-

timed Comput Commun Appl 16(1):1–35

29. Tomar D, Agarwal S (2015) Hybrid feature selection based

weighted least squares twin support vector machine approach for

diagnosing breast cancer, hepatitis, and diabetes. Adv Artif

Neural Syst 2015:265637. https://doi.org/10.1155/2015/265637

30. Wang TY, Chiang HM (2007) Fuzzy support vector machine for

multi-class text categorization. Inf Process Manag 43(4):914–929

31. Westman E, Muehlboeck JS, Simmons A (2012) Combining MRI

and CSF measures for classification of Alzheimer’s disease and

prediction of mild cognitive impairment conversion. NeuroImage

62(1):229–238

32. Weston J, Collobert R, Sinz F, Bottou L, Vapnik V (2006)

Inference with the universum. In: Proceedings of the 23rd inter-

national conference on machine learning. ACM, pp 1009–1016

33. Xu Y, Chen M, Li G (2016) Least squares twin support vector

machine with universum data for classification. Int J Syst Sci

47(15):3637–3645

34. Yue W, Wang Z, Chen H, Payne A, Liu X (2018) Machine

learning with applications in breast cancer diagnosis and prog-

nosis. Designs 2(2):13

35. Zhang T, Chen W, Li M (2019) Classification of inter-ictal and

ictal EEGs using multi-basis MODWPT, dimensionality reduc-

tion algorithms and LS-SVM: a comparative study. Biomed

Signal Process Control 47:240–251

36. Zhou X, Jiang W, Tian Y, Shi Y (2010) Kernel subclass convex

hull sample selection method for SVM on face recognition.

Neurocomputing 73(10–12):2234–2246

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1002/ijfe.1858
https://doi.org/10.1007/978-981-13-0923-6_49
https://doi.org/10.1007/978-981-13-0923-6_49
https://doi.org/10.1145/3387131
https://doi.org/10.1155/2015/265637

	A fuzzy universum least squares twin support vector machine (FULSTSVM)
	Abstract
	Introduction
	Related work
	TWSVM
	ULSTSVM

	Proposed fuzzy universum least squares twin support vector machine (FULSTSVM)
	Linear FULSTSVM
	Nonlinear FULSTSVM
	Fuzzy membership function
	Time complexity

	Experimental results
	Data
	Setup and methodology
	Real-world data
	Statistical significance

	Insensitivity analysis
	Biomedical data
	Large-scale data

	Conclusions and future work
	Acknowledgements
	References




